- 12 A Continuous On-State Current
- 100 A Surge-Current
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 20 mA

TO-220 PACKAGE (TOP VIEW) K 1 2 G 3

Pin 2 is in electrical contact with the mounting base.

MDC1ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

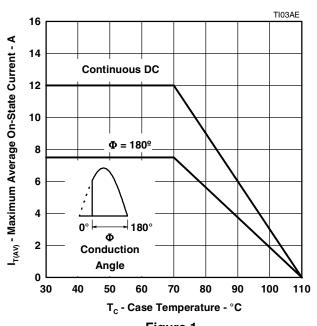
RATING		SYMBOL	VALUE	UNIT	
	TIC126D		400		
Repetitive peak off-state voltage	TIC126M	V	600	V	
	TIC126S	V_{DRM}	700		
	TIC126N		800		
	TIC126D		400	V	
Panetitiva neek reverse voltage	TIC126M	V	600		
Repetitive peak reverse voltage	TIC126S	V _{RRM}	700		
	TIC126N		800		
Continuous on-state current at (or below) 70°C case temperature (see Note 1)		I _{T(RMS)}	12	Α	
Average on-state current (180° conduction angle) at (or below) 70°C case temperature		1	7.5	Α	
(see Note 2)		I _{T(AV)}	7.5	^	
Surge on-state current at (or below) 25°C case temperature (see Note 3)		I _{TM}	100	Α	
Peak positive gate current (pulse width ≤ 300 μs)		I _{GM}	3	Α	
Peak gate power dissipation (pulse width ≤ 300 μs)		P_{GM}	5	W	
Average gate power dissipation (see Note 4)		$P_{G(AV)}$	1	W	
Operating case temperature range		T _C	-40 to +110	°C	
Storage temperature range		T _{stg}	-40 to +125	°C	
Lead temperature 1.6 mm from case for 10 seconds		T_L	230	°C	

NOTES: 1. These values apply for continuous dc operation with resistive load. Above 70°C derate linearly to zero at 110°C.

- 2. This value may be applied continuously under single phase 50 Hz half-sine-wave operation with resistive load. Above 70°C derate linearly to zero at 110°C.
- 3. This value applies for one 50 Hz half-sine-wave when the device is operating at (or below) the rated value of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
- 4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

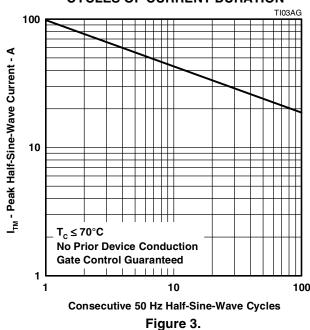
	PARAMETER		TEST CONDITION	ONS	MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V _D = rated V _{DRM}		T _C = 110°C			2	mA
I _{RRM}	Repetitive peak reverse current	V _R = rated V _{RRM}	I _G = 0	T _C = 110°C			2	mA
I _{GT}	Gate trigger current	V _{AA} = 12 V	$R_L = 100 \Omega$	t _{p(g)} ≥ 20 μs		8	20	mA
V _{GT} Gate trigger voltage	$V_{AA} = 12 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$	$T_C = -40^{\circ}C$			2.5		
	Gate trigger voltage	$V_{AA} = 12 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$			0.8	1.5	V
		$V_{AA} = 12 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$	T _C = 110°C	0.2			
I _H Holding current	$V_{AA} = 12 \text{ V}$ Initiating $I_T = 100 \text{ mA}$		T _C = - 40°C			100	mA	
	Tiolding durions	$V_{AA} = 12 \text{ V}$ Initiating $I_T = 100 \text{ mA}$					40	
V _T	On-state voltage	I _T = 12 A	(see Note 5)				1.4	V
dv/dt	Critical rate of rise of off-state voltage	V _D = rated V _D	I _G = 0	T _C = 110°C		400		V/µs

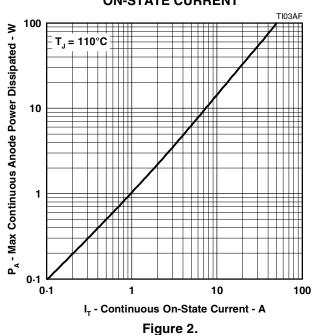

NOTE 5: This parameter must be measured using pulse techniques, $t_p = 300 \mu s$, duty cycle $\leq 2 \%$. Voltage sensing-contacts, separate from the current carrying contacts, are located within 3.2 mm from the device body.

thermal characteristics

	PARAMETER	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			2.4	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

THERMAL INFORMATION


AVERAGE ON-STATE CURRENT DERATING CURVE


Figure 1.

SURGE ON-STATE CURRENT

CYCLES OF CURRENT DURATION

MAX ANODE POWER LOSS vs ON-STATE CURRENT

TRANSIENT THERMAL RESISTANCE

CYCLES OF CURRENT DURATION

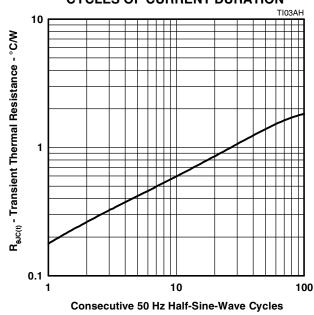
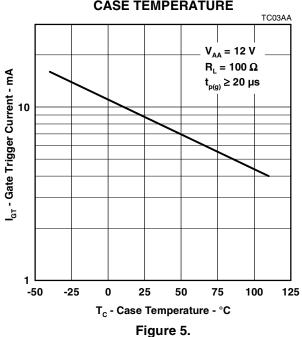
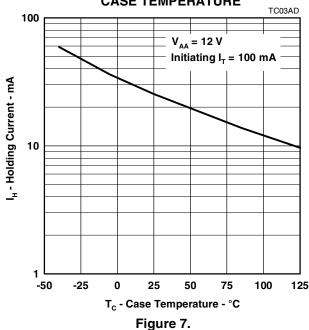
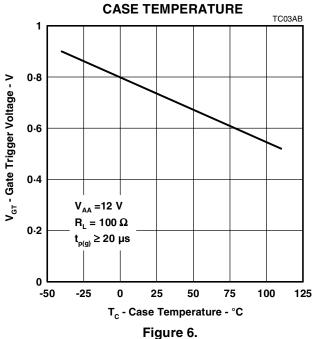



Figure 4.

TYPICAL CHARACTERISTICS

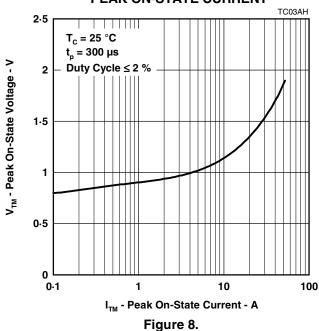

GATE TRIGGER CURRENT vs

CASE TEMPERATURE



HOLDING CURRENT vs

CASE TEMPERATURE



GATE TRIGGER VOLTAGE

PEAK ON-STATE VOLTAGE

PEAK ON-STATE CURRENT

